Exercise 76

Industrial costs A power plant sits next to a river where the river is 800 ft wide. Laying a new cable from the plant to a location in the city 2 mi downstream on the opposite side costs $\$ 180$ per foot across the river and $\$ 100$ per foot along the land.

a. Suppose that the cable goes from the plant to a point Q on the opposite side that is $x \mathrm{ft}$ from the point P directly opposite the plant. Write a function $C(x)$ that gives the cost of laying the cable in terms of the distance x.
b. Generate a table of values to determine whether the least expensive location for point Q is less than 2000 ft or greater than 2000 ft from point P.

Solution

Label the length of the hypotenuse as L_{1} and the length from Q to the city as L_{2}.

The sides of a right triangle are related by the Pythagorean theorem.

$$
\begin{gathered}
800^{2}+x^{2}=L_{1}^{2} \\
L_{1}=\sqrt{x^{2}+640000}
\end{gathered}
$$

The cost of laying the cable as a function of x is then (note 1 mile is 5280 feet)

$$
\begin{aligned}
C(x) & =180 L_{1}(x)+100 L_{2}(x) \\
& =180 \sqrt{x^{2}+640000}+100(2 \cdot 5280-x) \\
& =180 \sqrt{x^{2}+640000}+1056000-100 x .
\end{aligned}
$$

Below is a graph of the cost function versus x.

It's least expensive to lay cable when P is about 534 feet from Q, which is less than 2000 feet. The minimum cost is about $\$ 1,176,000$.

